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There are three main reasons why we 

employ models: 
 

1.To predict – the future state of things; data we 

can’t observe; or what would happen if 

something changes in a predictable way 

 

2.To act as a benchmark by which to judge 

reality e.g. optimality in transportation 

systems 

 

3.To obtain information on the processes that 

produce the data we observe about the world. 
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The most common way of uncovering information 

on spatial associations is to calibrate a spatial 

model and obtain estimates of the model’s 

parameters.  

 

The more parameters we can reliably estimate, the 

more information on spatial associations we can 

generate to help us make inferences about spatial 

processes. 

 

 

  



In a typical model (linear or non-linear) applied to 

spatial data we assume that the processes that 

generate the data we observe are stationary over 

space 

 
 

- That is, the same stimulus provokes the same 

response in all parts of the study region: 

 

yi = 0 + 1x1i + 2x2i +… nxni + i 

 



But suppose the processes aren’t the 

same everywhere… 
 

For example… 

Suppose we regressed the proportion of people with 

cardio-vascular disease on a variety of socio-economic 

attributes  for data zones across Scotland 

 

Would we really expect these relationships to be the same 

for all data zones?  Would we really expect these 

relationships to be the same across Glasgow? 

 

If we calibrated a global model using data from across 

Scotland would we miss important differences? 

 

 

 

 



For example… 

 

Suppose we regressed the extra revenue raised on sales 

of surfing equipment on the amount spent on advertizing 

surfing equipment across cities in the US. 

 

 

Would we really expect this relationship to be the same for 

St Louis and Honolulu? 



For example… 

 

Suppose we regressed the likelihood of voting Republican 

on income across the US  

 

 

Would we really expect this relationship to be the same for  

College Towns  and Non-College Towns? 



Equally, if we calibrated a spatial lag model 
 

yi = β0 + β1x1i + β2x2i + … βnxni + θ ylagi 
 

 

Given θ is a measure of spatial autocorrelation, why 

would we expect θ to be constant over space? 

 

A variety of statistics have been developed to 

measure spatial variations in autocorrelation (e.g. 

LISA; Getis-Ord etc) 

 

 



And if regressed actual road distances on 

distances generated from coordinates 

(say, Euclidean or Manhattan distances) in 

a system like this… 

dij(p) = [(xi – xj)
p + (yi – yj)

p ]1/p 





Another indicator of the importance of 
local modelling - Simpson’s Paradox 
 
Spatially aggregated data Spatially disaggregated data 



In such situations, a global model is incorrect and 

the parameter estimates will represent ‘averages’ 

of underlying spatially varying relationships. 

 

 

In fact, there are several model forms that 

allow for spatial nonstationarity in 

processes: 

So we need a more flexible model form that 

allows the parameters to vary over space 
 



Models that allow for spatial nonstationary 

processes fall into two categories: 
 

 

1. Those which require ‘regions of stability’ to be defined 

a priori e.g. 

 

i. Hierarchical or Multilevel models 

ii. Spatial regime models 

 

2. Those which do not  e.g. 

 

1. Geographically Weighted Regression (GWR) 

2. Spatial Filtering Models 

3. Bayesian Spatially Varying Coefficients Models 



Geographically Weighted Regression 

The Problem: If we believe the processes are 

examining might be spatially nonstationary and we had 

many repeated samples at every location, we could run 

separate regressions for each location. Unfortunately we 

rarely have such data and usually we have only a single 

set of observations at each location.  

The Solution: Borrow data from nearby locations, 

weighted by the proximity of the location from data are 

being borrowed to the location for which the local 

regression is calibrated.  Under the assumption of 

spatial dependency in processes, to minimise bias in the 

results, we weight data from nearby locations more 

heavily than from more distant ones.   





Where the local parameter estimates are 

obtained with the estimator 

 ’(i)  =  (XTW(i) X)-1 XT W(i) Y 

 

where W(i) is a matrix of weights specific 

to location i such that observations 

nearer to i are given greater weight than 

observations further away. 

 



    wi1  0 .……..…..0 

    0   wi2 …..……..0 

 W(i) = 0    0  wi3 ……..0 

    .     .    .          . 

    0    0   0 ………win 

 

 

where win is the weight given to data point n for 

the estimate of the local parameters at 

location i. 

 



A Typical Spatial Weighting Function 



Geographically Weighted Regression 

Regression point 

Data point 



Geographically Weighted Regression 

Regression point 

Data point 



Weighting schemes 

 

Numerous weighting schemes can be used 
although they tend to be Gaussian or 
‘Gaussian-like’ reflecting the type of 
dependency found in most spatial processes. 

 

Weighting schemes can be either fixed or 
adaptive.  

 

 



Fixed Weighting Scheme 



Example of a Fixed Weighting 

Scheme 
For each location i at which the local regression model 

is calibrated, 

 

  wij = exp [ - ½ (dij / h)2 ] 
 

where 

 dij is the distance between locations i and j  

 h is the bandwidth – as h increases, the gradient of the 
kernel becomes less steep and more data points are 
included in the local calibration. We need to find the 
optimal value of h in the GWR routine.  

 



Spatially Adaptive Weighting 

Scheme 



Example of a Spatially Adaptive 
Weighting Scheme 

 

wij = [1-(dij
2 / h2)]2  if j is one of the Nth  

    nearest neighbours of  
    i 

   = 0    otherwise  

 

Here, we find the optimal value of N 

 in the GWR routine 



Calibration 

The results of GWR appear to be relatively insensitive to 

the choice of weighting function as long as it is a 

continuous distance-based function 

 

Whichever weighting function is used, the results will, 

however, be sensitive to the degree of distance-decay. 

 

Therefore an optimal value of either h or N has to be 

obtained. This can be found by minimising a 

crossvalidation score  (CV) or the Akaike Information 

Criterion (AICc) or some other criterion! 

 



Optimal  

Bandwidth size 

AICc 



Bandwidth Selection 

Optimal bandwidth selection is a trade-off 

between bias and variance 

 

Too small a bandwidth leads to large variance 

in the local estimates 

Too large a bandwidth leads to large bias in 

the local estimates 

 

 



Bandwidth and Effective Numbers 

of Parameters 

As the bandwidth → ∞, the local model will tend 
to the global model with number of 
parameters = k. 

 

As the bandwidth → 0, the local model ‘wraps 
itself around the data’ so the number of 
parameters = n 

 

The number of parameters in local models 
therefore ranges between k and n and 
depends on the bandwidth. This number 
need not be an integer and we refer to it as 
the effective number of parameters in the 
model   



An Example from the Georgia Data 

Bandwidth and The Effective Number of 

Parameters
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Output from GWR 

 Main output from GWR is a set of 

location-specific parameter estimates 

which can be mapped and analysed to 

provide information on spatial non-

stationarity in relationships. 

 



An Example using Educational 
Attainment Data in Georgia 



In GWR, we can also ... 

• estimate local standard errors 

• derive local t statistics 

• calculate local goodness-of-fit measures 

• perform tests to assess the significance of 
the spatial variation in the local parameter 
estimates 



PLUS an advantage of this method of borrowing data from 

nearby locations is that an optimal bandwidth, or decay rate, is 

determined  - tells us something about the spatial scale over 

which the processes operate. 

 

If the processes are local, the opt. bandwidth will be small; 

 

If the processes are regional, the opt. bandwidth will be 

large; 

 

If the processes are global, the opt. bandwidth will tend to 

infinity.  

 

An extension to GWR, Multiscale GWR, or MGWR, takes this 

further and allows the spatial scale over which processes take 

place to vary by process. (more on this in second lecture…) 



A Simulation Experiment 

Yi = αi + β1i X1i + β2i X2i 
   Data on X1 and X2 drawn randomly for 2500 locations on a 50 x 

50 matrix s.t. r(X1, X2)  is controlled. Results shown to be 
independent of r(X1,X2) 

 

 Experiment 1: (parameters spatially 
invariant) 

αi  = 10  for all i 

β1i  = 3  for all i 

Β2i  = -5  for all i 

 

Yi obtained from above 

Data used to calibrate model by global regression and by GWR 
using an adaptive bandwidth 



Results… 

Global: 
Adj. R2 = 1.0   AIC = -59,390     K = 3 

α (est.) =  10;  β1 (est.) = 3;  β2 (est.) = -5 

 

GWR: 
Adj. R2 = 1.0   AIC = -59,386     K = 6.5  

N = 2,434 

αi (est.) =  10 for all i 

β1i (est.) = 3 for all i 

β2i (est.) = -5 for all i 

 

Conclusion: 
 GWR does NOT indicate any spurious 

nonstationarity when relationships are constant 



 

 Experiment 2: (parameters spatially variant) 

0 ≤ i ≤ 50  0 ≤ j ≤ 50 

 

αi  = 0 + 0.2i + 0.2j  0 to 20 

β1i  = -5 + 0.1i + 0.1j  -5 to 5 

Β2i  = -5 + 0.2i + 0.2j -5 to 15 

 

Yi obtained in same way 

Data used to calibrate model by global regression 

and by GWR using an adaptive bandwidth 



Results… 
Global: 
Adj. R2 = 0.04   AIC = 17,046     K = 3 

α (est.) =  10.26;  β1 (est.) = -0.1;  β2 (est.) = 5.28 

These are close to the averages of the local estimates (10;0;5) 

 

GWR: 
Adj. R2 = 0.997   AIC = 2,218   K = 167  

N = 129 

αi (est.) range =  2 to 18.6 

β1i (est.) range = -4.3 to 4.7 

β2i (est.) range = -3.9 to 13.6 

 

Conclusion: 
 GWR identifies spatial nonstationarity in relationships; 

global model fails completely. 



0  ≤ α(i) ≤ 20 -5  ≤ β1(i) ≤ 5 

 

-5  ≤ β2(i) ≤ 15 

 



An Empirical Example - 
House Prices in London 

1990 sales price data for 12,493 houses in 

London (excludes houses sold below market 

value) 

along with various attributes of each property 

and a postcode so locations down to 100m can 

be obtained via the Central Postcode Directory 

neighbourhood data obtained for enumeration 

districts (via postcode-to-ED LUT) 



Locations of house sales in data set 



To what extent are differences in average 

house prices a function of differences in 

the intrinsic value associated with 

different areas and to what extent are they 

due to different mixes of properties? 

To answer this, we need regression 

techniques to account for variations in 

housing attributes so that we can derive a 

comparable value per sq.m.  



Global Regression Parameter Estimates

Variable Parameter T  value
Estimate

Intercept  58,900 23.3

FLRAREA       697 49.3

FLRDETACH*       205                7.5
FLRFLAT*      -123   -5.6
FLRBNGLW*        -87           -1.4
FLRTRRCD*      -119                  -6.2

BLDPWW1**  -2,340 -3.9
BLDPOSTW**  -2,786 -3.1
BLD60S**  -5,177 -5.0
BLD70S**  -2,421 -2.1
BLD80S**   6,315          6.9

GARAGE    5,956            10.6
CENHEAT    7,777                 12.4
BATH2+  22,297            19.1

PROF 72     3.0
UNEMPLOY      -211   -5.5

ln(DISTCL) -18,137           -30.1

R
2
 = 0.60

* Excluded house type is Semi-detached
** Excluded age is Inter-war 1914-1939



However, these are all global 

results, i.e. averages over the 

whole of London.   

Might there be differences across 

London in some of these 

relationships? 



Using GWR 

 

In this case an adaptive kernel was used - a 

bisquare function 

Calibration yielded an optimal number of 

nearest neighbours = 931 

Results presented in a series of parameter 

surfaces - those shown all have significant 

spatial variation 



Value of terraced property £/m2 
(global estimate = £578) 



Pre-1914 housing compared to inter-war 
(global estimate = £-2,340) 



 1960s housing compared to inter-war 
(global estimate = £-5,177) 



Residuals from Global Model 



Residuals from GWR Model 



• GW poisson regression 

• GW logistic models 

• GW principal components analysis 

• GW discriminant analysis 

• GW spatial interaction models (more on 

this in second lecture…) 

• etc… 

 

The concept of geographical weighting 

can be applied to many other models 



Can use GWR as a ‘Spatial Microscope’ 

Instead of determining an optimal bandwidth during 
the calibration of a GWR model, a bandwidth can be 
input a priori. 

A series of bandwidths can be selected and the 
resulting parameter surfaces examined at different 
levels of smoothing 

For example, consider a very simple model of house 
prices regressed on floor area for 570 houses in Tyne 
& Wear, North East England. 

Surfaces of the local floorspace parameter are derived 
for bandwidths corresponding to 400, 350, 300, 250, 
200, 150, 100 and 50 NN 
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When used properly, GWR provides a flexible, intuitive, 

easy-to-calibrate, scalable, extendable, framework that 

provides local parameter estimates, local standard errors, 

and local goodness-of-fit statistics, all of which help us think 

more deeply about our models of the real world. 

 

It also provides information on the spatial scale at which 

different processes operate and  

 

the concept is applicable beyond regression (e.g. GWPCA; 

GWDA; SWIM) 

 
 

Summary 



What GWR is: 

 
1. A means of modeling and  detecting spatial non-stationarity 

in associations arising from spatial variations in attitudes, 

preferences or different administrative, political or other 

contextual effects that produce different responses to the 

same stimuli 

 

      This view is in alignment with social theory! 

       

       GWR is a technique that is neither truly nomothetic        

 nor truly idiographic 

 



What GWR is: 

 
 

2. A ‘data-borrowing’ technique - provides an intermediate 

level of analysis between observing multiple outcomes of a 

process at each  location (the ideal) and only observing one 

outcome of a process at each location (reality).   

 

GWR calibrates a model specific to location i by ‘borrowing’ 

data from nearby locations and weighting these data 

according to how far from i they are located 

 



3. A means of identifying and quantifying the spatial 

scale at which processes occur via an optimal 

bandwidth. 

   

4. As a side benefit – removes spatial autocorrelation of 

error terms resulting from applying a global model to 

spatially varying processes.   

 

5. A diagnostic tool for detecting model misspecifcation 

if the processes being modeled are stationary 

      

 This view is more in alignment with positivism 

 

GWR is also… 



 

What GWR is not: 

 
1. A means of improving a poorly specified  global model 

 

2. A competitor to spatial regression models – you can 

have geographically weighted SAR and CAR models 

 

3. A solution to any other potential problems inherent in 

the global model (except possibly spatially 

autocorrelated errors) 

 

4. An excuse for not thinking about the processes that 

might have produced your data 

 



 
King (1996: p 161)  Political Geography 

 

“Geographical tools are essential for 

displaying areal variation in what we know, 

but this is nowhere near as powerful as the 

role of geography in revealing features of 

data…that we would not otherwise have 

considered.” 

 

 

Thank you 

 



GWR and Spatial Autocorrelation 

Suppose we have a non-stationary 
process that can be modelled by: 

 

yi =  + i xi 

 

but we model it incorrectly with a global 
model of the form: 

 

yi =  +  xi 

 

 



Real values of i 

.9    .8    .8    .7    .5 

.8    .7    .6    .5    .4 

.7    .6    .5    .4    .4 

.6    .5    .4    .3    .2 

.5    .4    .3    .2    .1  



Estimated value of i from global 
model 

.5    .5    .5    .5    .5 

.5    .5    .5    .5    .5 

.5    .5    .5    .5    .5 

.5    .5    .5    .5    .5 

.5    .5    .5    .5    .5 



Residuals (yi - yi’) 

+    +    +    +    0 

+    +    +    0     - 

+    +    0     -     - 

+    0     -     -     - 

0     -     -     -     - 



The BIG question is then… 

When we observe spatially autocorrelated error 
terms in the regression of spatial data, how 
much of this is due simply to applying a 
global model to a non-stationary process or to 
model misspecification? 

 

Quite a lot possibly! 

 

 



In order to ‘borrow’ data to calibrate a local model at a 

location where insufficient data are available, some 

borrowing rule has to be established. Possibilities include: 

 

1. Borrow data from random sets of locations and try lots of 

different random sets and use the one optimizing some 

criterion. Ignores our experiences with spatial data. How 

robust would this be? 

 

2. Borrow data from similar types of locations.  For example, 

we could use MDS on the X covariates and weight locations 

by how similar they are to the regression location. Problem – 

couldn’t use this method to calibrate a model where no data 

are observed. 

 
 



 

3. In accordance with Tobler’s Law, borrow data from nearby 

locations under the premise that nearby locations are more 

likely to share similar processes than locations farther apart 

and weight the data according to how far away a location is 

from the regression point.  Minimizes  bias introduced to the 

calibration from using data which are the product of different 

processes.  

 

 

The latter definition is based on the reasonable geographic 

assumption that if processes are spatially varying, then this 

variation is likely to exhibit spatial dependence. 

 

 



Rule 1: Report and map local estimates divided by their 

local standard errors to produce local t, z or Wald statistics.  

 

Rule 2: Adjust critical values of t or z to account for 

multiple comparisons.  In GWR, this is done by first 

computing the Equivalent Number of Parameters (ENP) by 

2Tr(s) – Tr(s’s)  and then using the following correction: 

 

                      λ = α / (ENP/Pg) 
 

where Pg is the number of parameters in the global model. 

Critical value of t corresponds to λ and not α 

 
Da Silva and Fotheringham Geographical Analysis 2015  



Local parameter estimates will vary if different contextual 

effects produce different responses to the same stimuli, but 

also because of sampling variation  

 

So we need to be careful to account for the latter to see if 

there is any extra variation. 

 

We can do this through judicious significance testing – with 

the primary objective of not identifying false positives. 

 

This involves following three rules: 
 



Rule 3: Also test the significance of the spatial variability 

of each set of local estimates – numerous tests for this 

 

So, don’t read anything into or report 

 

(i) individual local estimates that are not significant 

 

(ii)surfaces of local estimates that do not exhibit any 

significant variation 

 



Obtaining local coefficients 

Collect all model terms pertaining to each 

explanatory variable 



Spatial Filter Specification 

intercept 
K spatial filter  

eigenvectors K*P potential 

interaction terms 
P global variables 

10 2,500 250,000 

In a system with 10 covariates and 2500 locations 



Experiment 
β0 

β1 

β2 



Spatial Filtering Known GWR 

β0 

β1 

β2 



Spatial Filtering 

GWR 


