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Today

• What is eXplainable AI (XAI) and why does it matter?


• A case study of  modelling ride-sharing preferences using XAI and big data.



Emergence of  AI

Big Data Computing

ML Algorithm
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Why AI/ML

• Unstructured data (e.g. image, video, text, speech, GPS, point clouds, etc.)


• Scalability for big data


• Fewer assumptions (distribution, relationship)


• Automated model selection


• Superior predictive accuracy
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Tradeoff  between accuracy and interpretability



Black box of  AI

• AI models are intrinsically hard to interpret due to a huge number of  parameters 
being estimated.



Black box of  AI



Trust issues with black-box AI

• Technical:


• Why a certain decision is made; when does the system work/fail, how to correct 
the error and improve the model?


• Ethical:


• Critical decisions are made by AI: healthcare, finance, security, etc.


• Discrimination and biases



Racial bias in COMPAS

Black offenders were seen almost twice as likely as white offenders to be labeled a higher 
risk but not actually re-offend.

Angwin et al. (2016)





Explainable AI (XAI)

• Explainable artificial intelligence 
(XAI) is a set of  processes and 
methods that allows human users to 
comprehend and trust the results and 
output created by machine learning 
algorithms.


• Improve understanding of  the 
underlying decision processes.


• Provide credibility and confidence 
of  the model parameters and 
outcome.

https://miro.medium.com/max/1400/1*-
vNI5N7f1GUBWFZUfwfd8w.png
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Google trends searching “XAI”

GDPR SHAP



XAI in urban applications



XAI for images

Das and Rad, 2020



XAI for text

https://pair-code.github.io/lit/demos/



XAI for tabular data

• Feature “importance”


• What are the major contributors to the 
model.


• Partial dependence plot


• Relationships between X and y.



Two types of  model explanations

Black Box

Explaining 
predictions from a 

model

Model-agnostic


Analysts and non-
experts


Looking at internal 
structure of  a 

model

Model-specific


ML Expert


Model-based

Post-hoc

Murdoch et al., 2019. PNAS



Post-hoc explanation
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SHAP

• SHAP (Shapley Additive Explanations): is a game theoretic approach to quantify the 
contribution of  each feature in the model that collectively makes the prediction.

https://github.com/slundberg/shap (Lundberg and Lee, 2017)
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• SHAP (Shapley Additive Explanations): is a game theoretic approach to quantify the 
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Shapley

Lloyd Shapley (1923-2016)

Nobel Prize in Economics (2012)

Shapley value measures -

 the average of  marginal contribution of  a 
player in a game over all possible different 
permutations in which the coalition can be 

formed.

Marginal contribution

Possible permutations



A Shapley value example

• Null: 0


• Ziqi: 5


• Qunshan: 10


• Nick: 100


• {Qunshan + Ziqi}: 5


• {Nick + Ziqi}: 120


• {Nick + Qunshan}: 140


• {Nick + Qunshan + Ziqi}: 150

• So, what is the contribution of  each us?



A Shapley value example

• So, what is the contribution of  each us?

Shapley(Ziqi) = {v(Ziqi) - v(Null)}/3 + 

{v(Ziqi + Qunshan) - v(Qunshan)}/6 + 

{v(Ziqi + Nick) - v(Nick)}/6 + 

{v(Ziqi + Qunshan + Nick) - v(Qunshan + Nick)}/3


= (5)/3 + (-5)/6 + (20)/6 + (10)/3 = 45/6 = 7.5
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• Null: 0


• Ziqi: 5


• Qunshan: 10


• Nick: 100


• {Qunshan + Ziqi}: 5


• {Nick + Ziqi}: 120


• {Nick + Qunshan}: 140


• {Nick + Qunshan + Ziqi}: 150

• So, what is the contribution of  each us?

• Shapley(Qunshan): 20


• Shapley(Nick): 122.5

A Shapley value example

Shapley(Ziqi) = {v(Ziqi) - v(Null)}/3 + 

{v(Ziqi + Qunshan) - v(Qunshan)}/6 + 

{v(Ziqi + Nick) - v(Nick)}/6 + 

{v(Ziqi + Qunshan + Nick) - v(Qunshan + Nick)}/3


= (5)/3 + (-5)/6 + (20)/6 + (10)/3 = 45/6 = 7.5



Shapley

• Shapley value is the unique solution for a fair distribution that has certain 
properties:


• Null, additivity, efficiency, symmetry properties


• Shapley in ML:


• Game-> model, player -> feature; outcome->prediction


• Shapley value of  a feature is the feature’s contribution to the model prediction



Shapley

• The computation of  Shapley value is NP-hard.


• SHAP provides different approximation methods to estimate Shapley value.


• Sampling based, Kernel based, Tree based, etc. 


• SHAP also unifies some other XAI methods for text and image explanations.


• SHAP has been integrated into industry XAI software such as Amazon SageMaker 
and Google Vertex Explainable AI.



SHAP
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Today

• What is eXplainable AI (XAI) and why it matters?


• A case study of  modelling ridesharing preferences using XAI and big data.



Ride-hailing market

• Uber and Lyft (and others) are common in cities.


• Jupiter Research (Dec 2021):


• Consumer spending on ride-hailing will 
approach US $937 billion by 2026.


• = 50 times the total annual revenue of  
Transport for London, New York City's MTA, 
and Beijing Metro in 2021.





Ride-hailing services (solo vs. shared)

• Solo rides: Single-occupancy. e.g. UberX and Lyft


• Shared rides: shared carpool style. e.g. UberPool and 
Lyft Shared


• Shared ride benefits: shared rides can reduce traffic 
congestion, cut per-passenger carbon emissions, 
reduce parking infrastructure, and provide a more 
cost-effective way to travel (Shaheen and Cohen, 
2019)


• Limited availability/popularity: Available only in 
selected cities, and occupies 15–25% of  total trips in 
cities such as London, Hangzhou, Toronto, and 
Chicago.



Understanding willingness to share

• To promote the proportion of  shared trips, we need to understand the factors 
influencing people’s willingness/reluctance to share.

Share?

?



Big trip data

https://data.cityofchicago.org/Transportation/Transportation-Network-
Providers-Trips/m6dm-c72p

• City: Chicago, USA


• Trip records are time-stamped.


• O-D are geo-referenced at the 
census tract level.


• Label: shared trip? 1 : 0
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Big trip data

• City: Chicago, USA


• Trip records are time-stamped.


• O-D are geo-referenced at the 
census tract level.


• Label: shared trip? 1 : 0


• Date: whole year of  2019


• Shared rides were suspended 
due to COVID.


• Total records: >10M



Modelling willingness to share

Share?

Hour of  the day

Week/weekend

Holiday

Weather:

• Rain

• Temperature

• Wind

Distances:

• Trip distance (straight)

• Distance to downtown

Built-environment:

• Walkability

• Distance to public 

transportation

Socio-economics

• Population density

• % no car

• Education (% College)

• Income (median household)

• Race/Ethnicity (% non white)

• Age (% 19-29)

Trip base fare

Additional fees

Upfront information

No post-trip information

❌ Actual trip distance

❌ Actual trip duration

❌ Total cost (incl. tip, late fees, etc.)




XGBoost

• XGBoost is a gradient boosting method that uses a gradient descent optimisation 
algorithm to sequentially ensemble decision trees to minimise model error (Chen and 
Guestrin, 2016). 


• XGBoost typically outperforms deep learning, random forests and other alternatives 
when handling tabular data (Grinsztajn et al., 2022; Shwartz-Ziv & Armon, 2022).


• XGBoost is highly scalable.



Workflow



Model accuracy



Feature group feature importance

SHAP values have been converted to probability.



SHAP-based partial dependence plots

8am 5pm
Sharing

Not sharing



SHAP-based partial dependence plots



Trip-level explanation analysis



Conclusions

• Decision to rideshare is largely driven by economic considerations.


• User tend to prefer ridesharing during am/pm rush hours.


• Socio-economic disparities.

• How will COVID impact the ridesharing market?


• How does ridesharing compete with public transport?



Some thoughts on XAI

• We should adopt a simpler and more interpretable model if  it has similar 
performance.


• If  AI model is used, some degree of  XAI should be presented to provide credibility 
of  the model.


• XAI can be a good alternative to statistical approaches especially when data is 
large.


• Explanations are skewed if  either data or model is biased.



Some further thoughts on XAI

• How do we evaluate explanation accuracy/faithfulness?


• Ground truth validations.


• Simulating simple data generating processes to validate model and explanations.
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• How can XAI inform us with the development of  (Geo)AI?


• XAI provides a great way to diagnose and improve model.

Data Model Explanations

Iterate



Some further thoughts on XAI

• How do we evaluate explanation accuracy/faithfulness?


• Ground truth validations.


• Simulating simple data generating processes to validate model and explanations.


• How can XAI inform us with the development of  (Geo)AI?


• XAI provides a great way to diagnose and improve model.


• Can XAI give us spatial explanations?
Data Model Explanations

Iterate



Some thoughts on XAI

• Benchmark with spatial models


• Validate explanations


• Discuss the use of  XAI with spatial data



https://christophm.github.io/interpretable-ml-book/

XAI Book



Thank you!

• Email: Ziqi.Li@glasgow.ac.uk


• Twitter: @geo_ziqi




