

Macroscopic traffic flow modeling and control of heterogeneous cities with multi-sensor data

Dr Konstantinos Ampountolas

School of Engineering University of Glasgow United Kingdom

Data Management for Urban Transport Operations Urban Big Data Centre, June10, 2016

SASNet

Outline

- Motivation
- Aggregated modeling with multi-sensor data
- · Application to San Francisco
- · Field implementation in Melbourne, Australia
- Aggregated Modeling for bi-modal networks

Goal:

 Mitigate congestion in transport networks via appropriate control policies and by using multi-sensor data

Approach:

- Understand what causes congestion (+gridlocks)
- **Urban road networks:** Meter the input flow to the system and hold vehicles outside the system if necessary (to maintain maximum throughput, e.g. number of trip completion)
- Motorways: Meter the input flow to the on-ramp (merging area) and hold vehicles outside the motorway if necessary (to maintain maximum throughput in the mainline)

3

Walking experiment (TRAIL Conference, 2010)

No control (nature)

Ramp metering (control of the entrance point)

Funnel experiment

- Poor rice into a funnel using two different strategies:
 - Poor as much rice into the funnel as possible without spilling
 - Try to limit the inflow such that there is "no queue of rice"
- Which strategy is quicker or maximises the output?
- Funnel = merging traffic infrastructure
- Rice = vehicles
- Output = number of trips completed

Rice funnel experiment

Dump all rice into the funnel on the left

slowly pour rice into the funnel on the right

The rice passes through the right funnel much faster.

Aggregated modeling with multi-sensor data

- Fixed sensors: 500 detectors (Occupancy and Counts per 5min)
- Mobile sensors: 140 taxis with GPS; Time and position (stops, hazard lights etc)
- Geometric data (detector locations, link lengths, control, etc.)

Problem

Problem

- A single-region city exhibits consistent aggregated traffic behavior (Macroscopic or Network Fundamental Diagram) if congestion is homogeneously distributed
- How the concept of aggregated traffic behavior be applied to:
 - Multi-region cities with multiple centers of congestion?
 - Mixed bi-modal (cars and buses) multi-region networks?
- Can we observe a similar aggregated traffic behavior if we collect heterogeneous multi-sensor data?

Modeling: City-wide, homogeneous, single-region

- A single-region city exhibits consistent aggregated traffic behavior: Macroscopic Fundamental Diagram (MFD)
- Network flow (q) vs. Accumulation (n) or Density (k): q = O(n)

a

University of Glasgow

Modeling: City-wide, heterogeneous, multi-region (1)

 A heterogeneous large-scale city can be partitioned in a small number of homogeneous regions

Modeling: City-wide, heterogeneous, multi-region (2)

- A heterogeneous large-scale city can be partitioned in a small number of homogeneous regions
- **Finding:** Each reservoir *i* exhibits an MFD with moderate scatter
- Heterogeneity: Each reservoir reach the congested regime at different time

Results: MFDs and Heterogeneity

MFD for the original network

Experiments:

- AIMSUN microscopic simulator
- 4-hours demand scenario
- 10 replications R1-R10

Findings:

- MFD: RES1-RES3 exhibit MFDs with quite moderate scatter
- Heterogeneity: RES1-RES3 reach the congested regime different time

13

University of Glasgow

Perimeter control (non-adaptive drivers)

No control

Feedback perimeter control

14

Perimeter control (somewhat adaptive drivers)

Feedback perimeter control

Results: Perimeter and boundary control effect

- TTS and space-mean speed are improved in average 11.7% and 15.4% respectively
- **FPC:** creates temporary queues at the perimeter of the network
- FPC: maintains the overall throughput to high values during rush

Results: Perimeter and boundary control effect

- Simulation with OD + DTA: improvement in average 45%
- Comparison with Bang-bang control: Improvement 10%
- FPC: No temporal queues at the perimeter of the network
- **FPC:** maintains throughput; respect reservoirs' homogeneity

Field Implementation in Melbourne, AU

Stonnington area, around 120 intersections

Field Implementation in Melbourne, AU

8:30-9:00 am

Progression of congestion from 7:00 am to 9:00 am

19

Field Implementation in Melbourne, AU

Morning peak and Partition

Evening peak and Partition

21

22

- Motivation
- Aggregated modeling with multi-sensor data
- Application to San Francisco
- Field implementation in Melbourne, Australia
- Aggregated Modeling for bi-modal networks

Existence of 3D MFD for bi-modal traffic (cars, buses) of Glasgow Multi-reservoir multi-modal network **Three-Dimensional vehicle MFD** 3 4000 n_c (veh) P (per/hour) 600 8000 n_b (veh) 10000 0 10000 800 600 400 200 **Three-Dimensional** 2000⁴⁰⁰⁰6000⁸⁰⁰⁰10000 passenger MFD

n_b (veh)

n_c (veh)

Geroliminis, Zheng, Ampountolas (2014) TR Part C

A 3D-vMFD for bi-modal mixed traffic

Flow-bi-Accumulation MFD = 3D-vMFD

Speed-bi-Accumulation 3D-vMFD

Composition of traffic AFFECTS the shape of the 3D-vMFD

Geroliminis, Zheng, Ampountolas (2014) TR Part C

Two-region control of mixed bi-modal traffic

Ampountolas, Zheng, Geroliminis, 2016; TR Part B (under review)

Spatial variation of bus/car ratio

Two-region control of mixed bi-modal traffic

Network clustering

Ampountolas, Zheng, Geroliminis, 2016; TR Part B (under review)

University of Glasgow

Results: Bus bunching and congestion

· Time-space diagram for bus trajectories in several public

Bus bunching phenomena

Other sensor data: Speed-flow relationship by NO₂

Traffic flow / speed curve by NO₂

Source of image Transport Scotland

